Havalandırma Sistemlerinde Temizoda Teknolojileri

Geleneksel Havalandırma Sistemlerinin Temizoda Teknolojileri Kapsamında Güncellenmesi

Dr. A. Serdar TUNCER, Metisafe Temizoda ve Biyogüvenlik

İnfeksiyon Hastalıkları ve Mikrobiyoloji Uzmanı

Mevcut kanıtlar, kişisel koruyucu ekipmanın faydalarının yanı sıra iç mekanlarda enfeksiyon yayılma riskinin sınırlandırılmasında, mikropartiküllerin hava yoluyla taşınmasını minimalize eden mühendislik tasarımlarının öneminin arttığını garanti edecek kadar güçlüdür. Covid-19 ile salgını ile birlikte yeniden tasarlanarak yapılan birçok deneysel ve gözlemsel çalışma virüsün yayılımının hava yolu ile olduğunu desteklemektedir. Çeşitli nedenlerden kaynaklı olarak daha önce ortaya atılan tutarsız bulguların karmaşıklığı yerini hava yolu ile mikrobiyal aktarım ve aerosol biliminin günümüzde yeniden yazılmasına bırakmaktadır.

 

Bina sayıları nüfus artışı ve şehirleşme ile hızlanarak devam etmektedir. Bu yapılar arasında salgın durumlarında en etkili yayılımı sağlayacak olanlar kalabalık ve insan trafiği yüksek olanlardır. Ancak, bu tarz yapıların büyük çoğunluğu hava biyogüvenliğinden ziyade konfor ve tasarrufa odaklanmaktadır. Hava kalitesi tanımı solunum havasını kirleten gazlar yanında 1-10 μm partiküllerin ortalama sayısının monitorizasyonunu yapan sayısal değerlere göre yapılmaktadır. Ancak, Covid-19 etkeni gibi küçük biyolojik parçacıklar aerosol veya küçük damlacık çekirdekleri halinde bireyler ve çevreleri arasında kolayca dolaşabilmektedir. Herkesi korumaya hizmet edecek olan  ve salgın hastalık riskini daha da azaltmaya yönelik olarak insan trafiği yüksek olan iç ortamlarda da mikron altı partikül yönetimi hijyenik hava kalitesi açısından daha önemli ve öncelikli hale gelmektedir.

 

Standart bina havalandırma sistemleri, iç ortamlara kişi başına yeterli oksijen tedariği sağlayacak miktarda taze hava ve atmosferin içerdiği tozları tutan temiz havayı sağlamaktadır. Nitekim, şimdiye kadar sektörel uzmanlık gerektiren alanların dışında kalan çoğu binanın havalandırma sistemlerinde yüksek verimli partikül tutucu filtre (HEPA) kullanımına kesinlikle gerek yoktur gibi yaklaşımlar Covid-19 salgını sonrası esnetilmek zorunda kalmaktadır. Bu ortamlarda etkin hijyenik hava temizliğinin uygulanması, inşaat mühendisliği ve havalandırma sektörünün konfor planlamalarının önüne geçmektedir. Genel kullanım amaçlı binaların havalandırma sistemlerinde HEPA filtrasyon kullanılmadığından mikron altı parçacıkların etkin olarak temizlenememesi bir yana yaratılan hava hareketleri ve oluşan momentum ile bütün mekanlara dağıtılması söz konusudur.

 

İç ortam havasında partikül miktarının azaltılmasında kullanılan ana teknoloji iki temel metod üzerine oturmaktadır, partikül filtrasyon ve hava akışkanlığı dinamikleri. Fiziksel ve aerodinamik özellikleri nedeniyle mikron altı büyüklükteki biyolojik parçacıkları elimine edecek verimliliğe, HEPA filtrasyona alternatif olabilecek onaylanmış bir yöntem henüz bulunmamaktadır. HEPA filtrasyon, mikron altı partikül sayısının düşürülmesinde halen tek başına en etkili tekniktir.

 

Yüksek verimli partikül HEPA ve diğer filtrelerin gerçekte nasıl çalıştığına dair bir anlayış eksikliği veya yanlış anlama mevcuttur. Optimal ve minimum filtreleme verimliliğinin yaklaşık 0,3 μm çapa sahip partiküller için % 99,97 veya daha fazla etkinlikte olduğu uzun yıllar önce belirlenmiştir. Virüsler ise ortalama olarak 100 nm (0,1 μm) boyutundadır. Burada basit elek gibi bir davranıştan bahsedilmemektedir. Değişik boyut, kütle ve momentumdaki parçacıkların filtre lif ağına çarpma ve durdurulmaları yanında, yavaş hareket eden parçacıkların difüzyonu ve zıt yüklü parçacıkların filtre lifleri ile elektrostatik etki ile tutunmalarının kombinasyonundan oluşan dinamik bir çarpışma tuzağı oluşmaktadır. Atom düzeyinde difüzyona izin veren Brownian hareketleri sayesinde filtre liflerine artan oranda çarpışma sağlandığından, 0,3 μm’den küçük ve kütlesi hafif olan virüs gibi parçacıklar HEPA filtrelere daha yüksek verimlilikte nüfuz ederek tutunmaktadır.

 

Temizoda uygulamaları genellikle tozsuz kritik üretim yapan tesisler veya hastanelerin özel bölümlerinde uygulanan profesyonel çözümler ile sınırlıdır. Özellikle kış aylarında kapalı ortamlarda genel topluma yayılan enfeksiyonların azaltılmasına hizmet edecek olan bu teknoloji portable hava temizleme cihazları ile günlük hayatımıza entegre olmaktadır. Bu yazıda, iç ortam havasında viral partiküllerin taşınması ve dağılmasının engellenmesinde mekanik havalandırma özellikleri ve partikül filtrasyon verimliliğine odaklanılmaktadır. Mikrobiyal dayanıklılık, konakçı immünitesi, dekontaminasyon ve diğer çevre ve mühendislik özellikleri bu yazının kapsamı dışında tutulmuştur. Önemi ve uygulama aciliyeti nedeniyle temel mühendislik çözüm yöntemleri, maliyet, işletme ve iç ortamdan partikül uzaklaştırma performansı yönünden ele alınmaktadır.

 

Aerosol diye tanımladığımız parçacıkların havada asılı kalabilen gaz veya küçük baloncuklar gibi hareket ettiği kabul edilmektedir. Yerçekimi ile hızla zemine inemeyecek kadar küçük ve düşük özgül ağırlıktaki bu parçacıklar, ve buharlaşma sonrası yüzeylere oturan damlacık nüveleri, hava hareketleri ile ile moment kazanarak iç ortam havasına tekrar yayılmaktadır (Şekil 1). Aynı şekilde, standart cerrahi maskelere tuzaklanan damlacıklardaki parçacıklar, damlacığın buharlaşması sonrası soluk verme ile iç ortam havasına nüfuz etmektedir. Bu nedenle, iç ortamlarda enfeksiyon kaynağı olabilecek toplam aerosolize olmuş mikron altı partikül sayısı insan sayısına ve kontrolsüz hava hareketlerine paralel olarak artacaktır .

 

Şekil 1. İnfektif partikül kaynakları ve aerosolize olmuş mikron altı parçacıkların iç ortam hava hareketleri ile oda içine dağılımının şematize edilmesi.

Covid-19 gibi bir patojen toplumda halihazırda yaygınsa, kapalı ve kalabalık ortamlarda virüsü çeşitli şekil ve yoğunluklarda yayabilen birden fazla kaynak olacağı aşikardır. Bu prensipten yola çıkarak sosyal mesafeden bağımsız, iç ortam insan trafiği ile orantılı uzun menzilli aktarım olarak kabul edilen aerosol inhalasyonu salgınlarda önemli rol alabilmektedir. Damlacıkların buharlaşma süresi ile paralel yürütülen deneylerde Covid-19 enfeksiyon oluşturma etkinliğini kaybetme süresinin yaklaşık 30 dakika içinde gerçekleştiği gösterilmiştir. Bu doğrultuda, infeksiyon etkenlerinin HEPA filtrasyonu yanında hava akımlarının optimal yönetimi de önem kazanmaktadır. Bu çalışmaların sonuçları göz önüne alınarak, mikron altı parçacıkların iç ortamdan uzaklaştırılma süreleri hijyenik hava kalitesinin sağlanmasında en önemli kriter olarak karşımıza çıkmaktadır.

 

Havada asılı kalan partiküllerin iç ortamda geçirdiği süre binanın havalandırma sisteminin teknik detaylarına bağlıdır. Bu yazının konusu genel kullanma açık ortak alanlar olduğundan temizoda uygulamalarında etkisi olan diğer fiziksel özelliklere değinilmeyecektir. Bir saat içindeki hava çevirim sayısı (ACH) temel alınacak kriterlerden biridir. Hava çevirim sayısı arttıkça filtrelenerek tozdan arındırma performansı da artacaktır.

 

ACH                                (Saatlik Hava Değişim Sayısı)

Hava yolu ile taşınabilen partiküllerin %90’ının iç ortamdan uzaklaştırılması için gerekli süre (Dakika)

2

69

3

46

4

35

5

28

6

23

8

17

10

14

 

Tablo 1. HEPA filtre edilmiş saatteki hava değişim sayısına bağlı olarak iç ortamlarda kontaminasyon kaynağı olabilecek parçacıkların %90’ının temizlenmesi için gereken süreler. (Ref. CDC Rehberleri)

 

Temizoda teknolojilerinde 60 yılı aşkın sürelik tecrübe ile elde edilen bilgiler ve temizlik standartlarının varlığı insanlığın yaşadığı salgınlar döneminde önemli bir adım atılabilmesini sağlayacaktır. Hava akımının ulaşmadığı veya vortekslendiği ölü alanlardaki partikül süpürmeleri gibi ileri mühendislik detaylar bu yazının kapsamını çok aşacağından sadece sabit ACH değeri üzerinden performans ve karşılaştıma değerlendirmesi yapılacaktır. Mikron altı parçacıkların %90’nın üzerinde oda havasından temizlenme süresinin hangi aralıklarda gerçekleşeceği ekteki tabloda verilmiştir (Tablo 1). Bu tablo, Covid-19 gibi salgınlarda ilgilenilen sürenin 30 dakika altında olduğunu düşünülürse gereken ACH miktarı hakkında fikir vermektedir. Öte yandan, etkili hava kontrolü için minimum havalandırma oranı, mimari yapıya veya iç ortama bağlı olarak değişebilir. Genelde ev ortamı gibi birçok binada mekanik havalandırma sistemleri bulunmamaktadır. Taşınabilir-portable HEPA filtreli hava temizleyici cihazlar, ideal olmayan hava karıştırma ve akım teknikleriyle sınırlı olsa da, ev ve insan trafiği düşük ofisler ve mimarisi uygun olmayan küçük alanlar için bir seçenektir.

 

Binalarda genellikle merkezi veya lokal havalandırma sistemleri kullanılmaktadır. İç mekanlarda kullanım amacına göre bir uygulamanın diğerine üstünlükleri doğabilmektedir. Havalandırma sisteminin hem performans hem de sürdürülebilirliğinin sağlanmasında tasarım ve kurulum aşaması çok önemlidir. Geriye dönük olarak optimum bir çözüme ulaşmak zor olmakla birlikte işletilmekte olan sistemlerin her iki uygulama yöntemi ile revizyonunu sağlamak mümkün olabilmektedir.

 

Bu yazıda, insan trafiğinin yüksek olduğu orta ve büyük ölçekli işletilmekte olan binaların hava yolu ile partikül bulaşının minimalize edimesini sağlayacak merkezi ve lokal çözüm yöntemleri karşılaştırılmaktadır. Dünya üzerinde bu nitelikteki mevcut yapıların çoğunluğu merkezi havalandırma ve iklimlendirme sistemi kullanmaktadır.

 

Geleneksel merkezi havalandırma sistemlerinde iç ortam hava veriş ve emiş menfezleri lokalizasyonu ve bunların hava akım hareketleri Şekil 2’de şematize edilmiştir. Yüksek tavanlı olmayan (3-4 metrenin altında) mekanlar için temizoda teknolojileri uygulamalarına yakın olan ve hasta izolasyon odalarında tavsiye edilen tavan beslemeli ve alttan emişli hava akış modelidir. Sadece tavan kısımlarından yapılan hava alışverişi yukarıda tarif edilen temizoda tekniklerinde olduğu gibi oda içi hava hareketlerini yaratamadığı gibi menfezler arasındaki mesafeye bağlı olarak havalandırma kısa devresi oluşturmaktadır (Şekil 2a). Ayrıca, oluşan bu hava akım kısa devresinde temiz ve iklimlendirilmiş havanın bir kısmı oda içine dağıtılamadan geri alınmaktadır. Tabana yakın hava verişler ise zemin yüzeylerde yüksek viral konstantrasyonlu damlacık nüvelerine oluşturdukları moment ile solunum bölgesini daha yüksek riske atacaktır (Şekil 2b). Soluma yüksekliğine yakın seviyelerde oluşturulan yatay hava akımlarının kişiden kişiye çapraz kontaminasyon riskini de arttırabileceği unutulmamalıdır.

 

Yüksek tavanlı ve geniş mekanlarda ise, tavanda birikimi artan gaz ve ince partiküllerin tavan seviyesindeki egzozlarla daha verimli bir şekilde uzaklaştırıldığı gösterilmiştir. Bu tarz kalabalığın fazla olduğu büyük salonlarda mimari ve hesaplamalı akışkanlar tekniği (CFD) ile hesaplamalar yapılararak hibrid hava akış teknikleri uygulaması gerektirebilmektedir. CFD modellemesi, bir havalandırma çözümü inşa edilmeden önce proses, tesis ve ekipmanın yanı sıra tedarik ve egzoz menfezlerinin hava akışı modelleri üzerindeki etkisini değerlendirmek ve çözüm yönteminin doğrulanması için etkili bir araçtır. Geniş ve yüksek hacimli alanlara ait mühendislik çözümler bu yazının kapsamını aştığından, yapılan karşılaştırma sadece tavan yüksekliği 3-4 metre altında olan mekanlarla sınırlandırılmıştır.

Şekil 2. Bina havalandırma sistemlerinde oda içi hava veriş ve hava emiş menfezlerinin yerleşimi ve bunların oluşturduğu hava akış hareketlerinin şematizasyonu.

 

Mekanlardaki hava akış şekilleri yukarıda önerilen tekniklere uygun düzenlenmediği sürece geleneksel havalandırma sistemine sahip binalarda sadece HEPA filtrasyon ile hijyenik hava kalitesine ulaşılamayacaktır. Bu hava yönlenmesi düzenlemeleri yapılmadan merkezi hava santraline sadece HEPA filtre eklenmesi istenen verimi elde edemeyecek bir yaklaşımdır.

 

Temel kriter olarak düşük tavan yükseklikli mekanlarla sınırlandırıldığında partikül temizleme veriminde temizoda teknolojileri uygulama metodlarında ideal hava-partikül süpürme tekniklerinde odanın tavan kısmında oluşturulan temiz havanın yarattığı pozitif basınç ile havadaki partiküller aşağı doğru itelenmekte ve tabana yakın hava emiş menfezleri yardımı ile süpürülerek temizlenmektedir (Şekil 2c ve 2d). Özel tasarım hava çıkış difüzörleri kullanılarak tavan bölgesinin tümünü süpürmek ve köşelerde oluşan hava vortekslerini engelleyebilmek de mümkün olmaktadır (Şekil 2d)

 

Merkezi havalandırma sistemlerinde hava hijyen kriteri tavandan hava veriş ve tabana yakın hava emiş sağlandıktan sonra iki şekilde karşılanabilir. Ana klima santrali çıkışına konulacak HEPA filtre veya her odanın hava veriş menfezine eklenecek olan son nokta HEPA filtreleri yerleşimi. Uygulanabilecek her iki yöntemde de filtrelerin karşı direnç artışı ve uzun mesafeli hava kanalları boyunca oluşacak sızıntılar nedeniyle, genelde mevcut santrallerin gücü yetmemektedir ve ek bir hava santraline veya kapasite arttırımına ihtiyaç duyulacaktır. Ayrıca, merkezi sistemin düzgün işletilmesi gelişmiş bir otomasyon ve merkezi kontrol ünitesi gerektirmektedir.

 

Lokal havalandırma sistemi ise her iç mekana uygun kapasitede olan fan-motor, resirkülasyon kanalı ve filtreden oluşan parçalar grubu ile bağımsız olarak işlemektedir. Tavana monte HEPA FFU'lar aracılığıyla temiz hava verilmeden önce kanal sistemine uygun şekilde resirküle hava ve iklimlendirilmiş hava karıştırılmaktadır. Tesise uyum için her mekana uygun mühendislik ve mimariye uygunluğu sağlayabilecek esnekliktedir. Ayrıca, yeterli donanıma sahip lokal havalandırma sistemleri kendi kontrol ve alarm sistemleri ile işletilmektedir.

 

Temel kural olarak tabana yakın bölgelerden kirli havanın emişinin yapılması ile havalandırma santralinin merkezi veya lokal çalışması yatırım maliyeti açısından önemli bir farklılık göstermeyebilir. Binanın hacmine ve oda sayısına uygun FFU sayısına karşılık ek merkezi hava santrali maliyetleri birbirine yakın olacaktır. Her iki sistemde iç ortamda yer alacak hava emiş menfezleri ve ek hava kanalları ile revize edilmek durumundadır.

 

Her iki çözüm yönteminin hijyenik hava performans kriterini bu şekilde karşıladığını varsaydığımızda geriye sadece bakım ve işletme performansı kalmaktadır. HEPA filtrasyonlu ve doğru hava akış modeli tamamlanmış lokal ve merkezi havalandırma sistemlerinin işletilmesi sırasında sahip olacakları karşılaşılacak senaryolara bağlı sorunlar ve olası çözümlerle avantaj ve dezavantajları aşağıdaki ana başlıklarda değerlendirilmiştir.

 

  1. Hava Santrali motor arızası. Bu gibi durumlar için merkezi sistemlerde ikinci yedek bir hava santrali bulundurulması gerekmektedir. Aksi takdirde arıza durumunda tüm bina kullanılamaz hale gelir. Lokal sistemde arıza sadece bulunduğu odayı etkiler ve onarımı veya düzeltilmesi merkeziden daha kolay ve ucuzdur.
  2. Yetersiz hava gelmesi veya filtrelerin tıkanması. Merkezi sistemlerde binanın tüm havalandırması olumsuz etkilenecektir. Lokal sistemler münferit çalıştıklarından ve filtre kompanzasyon mekanizmasına sahip olduklarından alarm sistemlerinin devreye girmesiyle sadece gerekli odalara müdahele şansı tanır. Hatta, merkezi bir otomasyon sistemi ile cihazlar bina yönetim sistemine bağlanabilirse, bir FFU başarısız olduğunda diğerleri bunu telafi etmek için daha yüksek hava çevirim oranında çalıştırılabilir.
  3. İç mekanlar arasında hava akım yönlendirilmesi gereken durumlar. Acil durumlarda, kontamine kabul edilen ortamlar negatif basınç altında tutularak çevre odalara partikül sızıntıları engellenmesi gerekebilir. Tesis çalışanlarının kullandığı odalar ise istenirse pozitif basınç altında tutularak personelin kaynağı belli olmayan aeorosollere karşı korunmaları arttırılabilir. Merkezi sistemde hava damperleri ile odalar arasında basınç farkı yaratmak mümkündür. Ancak, daha küçük bir dizi bölgeyi kontrol edebilen kolay uyumlu FFU sistemlere göre otomasyonu ve yönetimi daha zordur.
  4. Boş ve kullanılmayan odaların gereksiz yere havalandırılmasının önlenmesi. Kullanımda olmayan mekanların havalandırmasının kapatılması veya gece/eko moduna alınarak çalıştırılması bölgesel kontrol üstünlüğü ile lokal havalandırma sistemlerinde hem daha kolay hem de gereksiz çalıştırma maliyetlerinden tasarruf edilmesine olanak sağlar. FFU sistemleri ile herhangi bir zamanda bir tesisin her hangi bölümü istenildiğinde devre dışı bırakılabilir, düşük kapasite moduna alınabilir veya aktive edilebilir.
  5. Yeni iç mekan ilavesi yapılma durumu. Merkezi sistem kanal ve menfez rekonstriksiyonu gerektirir. Böyle durumlarda mevcut klima santrali yeni ek kapasite ihtiyacını karşılayamayabilir. FFU sistemler sahip oldukları esneklik ve modülerlik sayesinde sadece o mekan için gereken şartları ekipman kullanarak yerinde çözüm sağlar.
  6. Hava kanallarında oluşan kaçaklar. HEPA filtre ister santral çıkışında isterse son noktada olsun havanın katedeceği mesafe lokal sistemlere göre çok daha uzun olacağından hava kanalında oluşacak sızıntılar fazla olacaktır. Bu sızıntılar hava kanallarının geçtiği yerlerde pozitif hava basıncı oluşturacağından mekanların tavan bölgelerinde olumsuz hava akımları oluşabilir. FFU sistemler sahip oldukları negatif plenum tasarımlar sayesinde herhangi bir sızıntı olsa dahi sızan hava plenumun içinde hapsedilir ve ortama sızıntı olmaz.
  7. Enerji tüketim performansı. Yukarıda sayılan tüm maddeler işletme bakım ve onarım maliyetlerini arttırmasının yanında merkezi sistemin daha yüksek hava miktarı ve basınca ihtiyaç duyması ek maliyet getirmektedir. Aynı hava kalitesi yanında sıcaklık ve nem kontrolünün sağlanmasında lokal çalışan FFU sistemlerinin daha az hava değişim oranına ihtiyaç duyması ayrı bir üstünlük arz etmektedir.
  8. Toplam işletme maliyeti: HEPA filtreli iklimlendirilmiş havanın maliyetinin standart bina havalandırmasına göre yüksek olması genel toplamda çok yüksek rakamlara ulaşabilir. Yapılan çalışmalarda iki sistem arasındaki enerji tüketim farkı %40’lara kadar çıkmaktadır. Merkezi sistemlerin ek bakım ve onarım maliyetleri de buna eklendiğinde yıllar içinde tesisin tüm inşaat ve mekanik kurulum maliyeti kadar kayıp ortaya çıkmaktadır.
  9. Hava yoluyla bulaşan mikrobial salgınlarda en etkin yayılım insan trafiğinin yüksek olduğu kapalı ortamlarda gerçekleşmektedir. Bu ortamlarda hijyenik hava ortamı oluşturulması toplum sağlığının korunması için gereklidir. Diğer parametreler bir kenara bırakılacak olursa hijyenik hava ortamı sağlamanın en temel kriteri mikron altı büyüklükteki partiküllerin en hızlı şekilde iç ortamdan uzaklaştırılmasıdır. Hijyenik hava ortamı, temizoda teknolojilerini geleneksel binalara adapte edip uygulayarak gerçekleştirilebilir. Bu adaptasyonu sağlamanın en kolay ve optimal performanslı yolu lokal havalandırma sistemleri ile mümkündür.

     

    Kurulum maliyetleri yakın olmasına rağmen lokal havalandırma sistemi ve Fan Filtre Üniteleri tercih edilmelidir?

  10. Merkezi olmayan bir hava işleme yaklaşımıyla artırılmış esneklik ve modülerlik sağlanır.
  11. Bir veya daha fazla ünitenin kaybı veya arızası tüm binayı tehlikeye atmaz.
  12. Standart cihaz tasarımı, otomasyon kontrol ve alarm özellikleri ile güvenli operasyon sağlanır.
  13. Tüm iç mekanlar birbirinden bağımsız kontrol edilebilir, veya merkezi bir kontrol sistemi ile tüm bina gerekliliklere göre yönetilebilir.
  14. İhtiyaçlar veya kullanımlar değiştikçe ek rekonstriksiyonlara girilmeden yeni şartlara adapte veya transfer edilebilme gibi esnekliklere sahiptir.
  15. Sahip olduğu performans verimliliği ve bakım-işletme kolaylığı yanında, gereksiz operasyon ve enerji kaybını ortadan kaldırarak yatırımın birkaç sene içinde geri kazanımını sağlar.